
Priority Queues --
Implementamtion

See Chapter 21 of the text, pages 807-839.



Binary heaps are often implemented in arrays, 
using a convenient indexing system for trees.  
We put the root at index 1.  The two children of 
the node at index n are at indices 2*n and 
2*n+1.  Alternatively, the parent of the node at 
index i is at index i/2.   If the tree is complete, 
meaning that every level except the bottom is 
completely filled and the bottom level has 
entries filled from left to right, then there are 
no gaps in the array.



Here is a picture of a heap and its corresponding 
array.  The index of each node is also indicated in the 
tree:
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Note that a complete heap with N nodes uses entries 
1 to N of an array of size N+1.

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]



To insert an element into the heap we start by 
placing it at the next available spot.  If the heap 
has n elements indexed from 1 to n, we put the 
new element at index n+1.  If it has value 
greater than its parent node (index (n+1)/2), we 
are done.  If not, we interchange it with its 
parent node and try  again.  The new value 
“percolates” up the tree until the heap property 
is satisfied.



Here is an example.  We add value 8 to the heap 
we just displayed.  First we insert it as the next leaf: 
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The value 8 is less than that of its parent node 
so we interchange it with its parent:



Its value is still less than its parent's so we 
interchange again:
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Our node now satisfies the heap property, so we 
stop interchanging and the entire tree is again a 
heap.  



Here is this process in terms of the underlying 
array.  We start by adding value 8 to the end:

3 10 45 12 11 48 50 18 25 8

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

The value we just inserted into index 10 is less 
than that of its parent at index 5, so we switch 
these values:

3 10 45 12 8 48 50 18 25 11

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]



Our value at index 5 is still less than its parent at 
index 2  so we switch those:

3 8 45 12 10 48 50 18 25 11

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

This now satisfies the heap property.



Here is code for adding a value x to a heap that is stored in 
array nodes:

boolean add(E x) {
if (size == CAPACITY)

return false;

int hole = size+1; // index where we might put x
size += 1;
nodes[hole] = x;
percolateUp(hole);
return true;

}



Here is code for percolateUp( ):
void percolateUp( int hole ) {

nodes[0] = nodes[hole]; // guarantees we will stop when hole=1

while (compare(nodes[hole],  nodes[hole/2])< 0 ) {
swap(nodes, hole, hole/2);
hole = hole/2;

}
}

void swap( E [ ] nodes, int i, int j) {
E temp = nodes[i];
nodes[i] = nodes[1j];
nodes[j] = t emp;

}



It is easy to find the smallest element; this is 
the first element of the array, or the root of 
the tree.  We need an operation that removes 
the smallest element.  In order to maintain a 
complete tree we must ultimately remove the 
last leaf, or last element of the array.  We 
make a hole at the root and pass it down 
through the tree until we find where we can 
insert the value of the last leaf.  We call this  
process "percolating down" the tree.  
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Graphically it looks like this.  We start with a 
heap and want to remove the root.
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We make a hole at the root and put the value 
of the last leaf there, deleting the last leaf 
node.

The smaller of the two children of the hole has 
value 8; this is smaller than the value in our 
hole so we switch these items, moving the hole 
down:
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Again the smaller of the two children of the 
hole is smaller than our leaf, so we move this 
smaller child into the hole:
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This time the hole has no child so we 
are done.



Here is code for removing and returning the 
smallest value in the heap:

E removeMin( ):
E min = nodes[1];
nodes[1] = nodes[size];
size -= 1;
percolateDown(1);
return min;

}



void percolateDown( int hole) {
E value = nodes[hole]; // value being passed down
while (2*hole <= size) {

int smallChild; // index of smaller child
if (2*hole == size)

smallChild = size;
else {

if (compare( nodes[2*hole], nodes[2*hole+1]) < 0)
smallChild = 2*hole;

else
smallChild = 2*hole+1;

}
if (compare(value, nodes[smallChild]) <=  0)

break;
else {

swap(nodes, hold, smallChild);
hole = smallChild;

}
}

}



Here is the really cool part.  We can turn an array 
into a heap in linear time!  We start at the leaves 
and work our way up.  Of course, there is nothing 
to do at the leaves, they are already  heaps.  When 
we get to a node we will have already turned its 
leaves into heaps, so all that we need to do is to 
percolate the value at the node downward:

void buildHeap( ) {
for (int i = size/2; i > 0; i--)

percolateDown(i);
}


