
Priority Queues --
Implementamtion

See Chapter 21 of the text, pages 807-839.

Binary heaps are often implemented in arrays,
using a convenient indexing system for trees.
We put the root at index 1. The two children of
the node at index n are at indices 2*n and
2*n+1. Alternatively, the parent of the node at
index i is at index i/2. If the tree is complete,
meaning that every level except the bottom is
completely filled and the bottom level has
entries filled from left to right, then there are
no gaps in the array.

Here is a picture of a heap and its corresponding
array. The index of each node is also indicated in the
tree:

3

10 45

12 11

18 25

48 50

3 10 45 12 11 48 50 18 25

2

1

3

4 5 6 7

8 9

Note that a complete heap with N nodes uses entries
1 to N of an array of size N+1.

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

To insert an element into the heap we start by
placing it at the next available spot. If the heap
has n elements indexed from 1 to n, we put the
new element at index n+1. If it has value
greater than its parent node (index (n+1)/2), we
are done. If not, we interchange it with its
parent node and try again. The new value
“percolates” up the tree until the heap property
is satisfied.

Here is an example. We add value 8 to the heap
we just displayed. First we insert it as the next leaf:

3

10 45

12 11

18 25

48 50

2

1

3

4 5 6 7

8 9 8 10

3

10 45

12 8

18 25

48 50

2

1

3

4 5 6 7

8 9 11 10

The value 8 is less than that of its parent node
so we interchange it with its parent:

Its value is still less than its parent's so we
interchange again:

3

8 45

12 10

18 25

48 50

2

1

3

4 5 6 7

8 9 11 10

Our node now satisfies the heap property, so we
stop interchanging and the entire tree is again a
heap.

Here is this process in terms of the underlying
array. We start by adding value 8 to the end:

3 10 45 12 11 48 50 18 25 8

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

The value we just inserted into index 10 is less
than that of its parent at index 5, so we switch
these values:

3 10 45 12 8 48 50 18 25 11

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

Our value at index 5 is still less than its parent at
index 2 so we switch those:

3 8 45 12 10 48 50 18 25 11

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

This now satisfies the heap property.

Here is code for adding a value x to a heap that is stored in
array nodes:

boolean add(E x) {
if (size == CAPACITY)

return false;

int hole = size+1; // index where we might put x
size += 1;
nodes[hole] = x;
percolateUp(hole);
return true;

}

Here is code for percolateUp():
void percolateUp(int hole) {

nodes[0] = nodes[hole]; // guarantees we will stop when hole=1

while (compare(nodes[hole], nodes[hole/2])< 0) {
swap(nodes, hole, hole/2);
hole = hole/2;

}
}

void swap(E [] nodes, int i, int j) {
E temp = nodes[i];
nodes[i] = nodes[1j];
nodes[j] = t emp;

}

It is easy to find the smallest element; this is
the first element of the array, or the root of
the tree. We need an operation that removes
the smallest element. In order to maintain a
complete tree we must ultimately remove the
last leaf, or last element of the array. We
make a hole at the root and pass it down
through the tree until we find where we can
insert the value of the last leaf. We call this
process "percolating down" the tree.

3

8 45

12 10

18 25

48 50

11

Graphically it looks like this. We start with a
heap and want to remove the root.

8 45

12 10

18 25

48 50

11

We make a hole at the root and put the value
of the last leaf there, deleting the last leaf
node.

The smaller of the two children of the hole has
value 8; this is smaller than the value in our
hole so we switch these items, moving the hole
down:

8

45

12 10

18 25

48 50

11

Again the smaller of the two children of the
hole is smaller than our leaf, so we move this
smaller child into the hole:

8

45

12

10

18 25

48 5011

This time the hole has no child so we
are done.

Here is code for removing and returning the
smallest value in the heap:

E removeMin():
E min = nodes[1];
nodes[1] = nodes[size];
size -= 1;
percolateDown(1);
return min;

}

void percolateDown(int hole) {
E value = nodes[hole]; // value being passed down
while (2*hole <= size) {

int smallChild; // index of smaller child
if (2*hole == size)

smallChild = size;
else {

if (compare(nodes[2*hole], nodes[2*hole+1]) < 0)
smallChild = 2*hole;

else
smallChild = 2*hole+1;

}
if (compare(value, nodes[smallChild]) <= 0)

break;
else {

swap(nodes, hold, smallChild);
hole = smallChild;

}
}

}

Here is the really cool part. We can turn an array
into a heap in linear time! We start at the leaves
and work our way up. Of course, there is nothing
to do at the leaves, they are already heaps. When
we get to a node we will have already turned its
leaves into heaps, so all that we need to do is to
percolate the value at the node downward:

void buildHeap() {
for (int i = size/2; i > 0; i--)

percolateDown(i);
}

